正文
而在本届 AAAI 大会上,华人力量的崛起也是一个非常值得关注的看点。在接收论文的列表上,我们也能很明显地看到大量华人研究者的名字,当然,其中有很多论文实际上是中外研究机构合作的成果,比如由加州大学伯克利分校和今日头条实验室合作发表的论文《一个用于时间模型中联合参数和状态估计的近似黑箱的在线算法(A Nearly-Black-Box Online Algorithm for Joint Parameter and State Estimation in Temporal Models)》。这篇论文的作者有来自伯克利电气工程与计算机科学系的 Yusuf B. Erol、吴翼(Yi Wu)和 Stuart Russell,以及来自今日头条实验室的李磊(Lei Li)。
论文摘要:对于时间模型而言,在线的联合参数和状态估计是一个核心问题。现有的绝大多数方法不是受限于特定类别的模型(比如 Storvik 过滤器),就是计算成本过高(例如,particle MCMC)。我们提出了一种全新的近似黑箱算法(nearly-black-box algorithm)——预设参数滤波算法(Assumed Parameter Filter/APF),这是一种用于状态变量的粒子滤波(particle filtering)和用于参数变量的预设密度滤波(assumed density filtering)的混合。它具有以下优势:(a)它是在线的并且在计算上是高效的;(b)适用于带有任意转变动态(transition dynamics)的离散和连续参数空间。和一些标准算法相比,在计算负载固定时,APF 在几种不同的模型上都生成了更加准确的结果。
大会结束之后,机器之心对 Yusuf B. Erol、吴翼和李磊进行了专访,请他们解读了这份研究成果并谈了谈对其它一些问题的看法。在此之前,先让我们对本文的这三位主角作一个简单介绍。
Yusuf Bugra Erol 和吴翼都是著名计算机科学学者 Stuart Russell 教授的博士学生,其中吴翼参与过的论文《Value Iteration Networks》在去年 12 月的 NIPS 2016 上获最佳论文奖(参看报道《
机器之心对话 NIPS 2016 最佳论文作者:如何打造新型强化学习观?
》)。而现任今日头条科学家、头条实验室总监的李磊也曾在伯克利进行过博士后研究(参看机器之心的专访《
头条实验室科学家李磊:准确率更高的问答系统和概率程序语言
》)。
以下是机器之心对该论文的这三位作者的采访内容:
论文解读
机器之心:首先请为我们简单介绍一下这篇论文的研究成果。
李磊:人工智能研究的恒久主题之一是对通用表示框架和快速推理算法的探索。时序概率模型中(即随时间变化的模型),参数和隐变量的在线联合估计通常比较困难。本文针对非常广泛的概率时序模型,提出一个通用且高效的参数和隐变量估计算法,称作预设参数滤波算法(Assumed Parameter Filter/APF)。这个算法将可用来解决几乎任意的时间序列模型中推理问题,且是在线估计,所以可以解决很长或者持续时间序列的问题。
机器之心:您提出的算法有什么看点?
Yusuf Erol:我们的算法有以下特色:
1. 通用,适用于(几乎)任意时间序列模型(状态空间模型);
2. 适用于持续时间序列数据;
3. 可以处理未知状态和参数的联合估计,之前的算法很多都只能估计未知状态,而能估计未知参数的算法都是离线的,比较慢;
4. 理论上可以逼近真实解。
机器之心:可以举例说明一下吗?
Yusuf Erol:举个例子,医院急症看护病房每个病人都接了很多监测仪器,持续测量血压、心跳、呼吸等生理指标。很多指标的采样频率很高,数据量非常大,靠护士监管看不过来,需要通过算法从这些持续监测的生理指标时间序列数据中实时自动的分析出病人状态,以便预测并应对突发情况,比如突发休克。这个问题一个方法是通过建立多维时间序列模型,这些模型刻画了人身体内生理运转状况,其中有些变量是没有直接监测到的(通常称作状态(state)),比如血管内流量大小和速度,还有一些是因人而异的参数比如脑容量大小、身高和体重等。需要解决的问题是有了时间序列模型和观测数据(比如血压和心跳)后,如何实时快速的估计出未知的变量和参数。