正文
方差就是这种风险的度量,即随机变量的变异性。它和描述统计学的方差是一个含义。
方差越大,随机变量的结果越不稳定,计算A方案的方差如下:
方差最后为62600,说明期望的波动很大。标准差为sqrt(62600) = 250.19,代表每一次的抽奖,与期望收益-110的距离是250.19元。
到这里,概率和期望方差的基本玩法已经讲完了。
二项概率分布
二项分布是一种离散型的概率分布。故明思义,二项代表它有两种可能的结果,把一种称为成功,另外一种称为失败。
除了结果的规定,它还需要满足其他性质:每次试验成功的概率均是相同的,记录为p;失败的概率也相同,为1-p。每次试验必须相互独立,该试验也叫做伯努利试验,重复n次即二项概率。
掷硬币就是一个典型的二项分布。当我们要计算抛硬币n次,恰巧有x次正面朝上的概率,可以使用二项分布的公式:
假设抛硬币5次,恰巧有3次正面朝上,则其概率为31.25%。可以使用Excel中的BINOM.DIST函数计算。
不妨把题目变化一下,变成计算硬币至少有三次正面朝上的概率是多少?有一种简单的方法是累加,将恰巧有3次,恰巧有4次,恰巧有5次的概率相加,结果便是至少3次,为50%。
回到运营活动的例子,上面一个运营活动公司亏惨了,现在运营需要重新做一个抽奖活动,每位用户拥有10次抽奖机会,中奖概率是5%。老板准备先考虑成本问题,想知道至少有3次以上中奖机会的概率是多少?
按照上题的思路,可以拿恰巧3次,恰巧4次直到恰巧10次累加求和,但是这样太麻烦了。此时可以换一个思路,先计算最多2次的概率是多少。那么便是f(0)+f(1)+f(2),结果是92.98%,利用概率公式1-92.98%,就是至少3次的概率了,为7.02%。看来老板还是能松口气的。
二项概率的数学期望为E(x) = np,方差Var(x) = np(1-p)。抽奖10次,那么抽奖的期望值就是1,方差为0.9。
运营学会二项分布,在涉及概率的各种活动中,将变得游刃有余。它的原理甚至能用到AB测试。大学考试中二项概率需要查专门的概率表计算,不过现在各类工具层出不穷,Python、R、Excel都能直接计算。