正文
2000 年,机器学习开始兴起。加上互联网的兴起,为其提供了巨量的数据。尤其是视觉方面出现了几大数据集,如 FDDB、ImageNet、KITTI、LFW、KITTI 等。特别是 ImageNet 的出现,让业界对计算机视觉燃起了强烈的兴趣和关注。
10 年之后,深度学习火速蹿升并爆发。赵京雷在一次演讲中提到,“深度学习是海量数据出现后的一个必然结果,它的出现使得‘识别’不需要再去考虑‘通过什么特征去进行’,而是可以通过学习完成识别。”
这些出现在特有节点的理论或实践不仅推动着计算机视觉方案的成熟,让视觉技术进入芯片端深度视觉阶段,也让一大批 AI 初创公司踏着移动互联网的末潮疾驰而来。阅面正是这波热潮中的一个。
赵京雷曾在各个场合丝毫不掩饰他对商业化落地的追求,在他看来,“研究型的 AI 公司烧钱是无底洞的。” 又加上阅面科技的产品形态主要面向消费级,这对成本和功耗提出了巨大的挑战。为了秉承「通过 AI 技术让人类生活更加美好」的创业初衷,又不违背「低成本、低功耗、高性能」的产品追求,阅面从一开始就把「主意」打在了嵌入式视觉算法上。
嵌入式算法是指在本地进行实时环境感知、人机交互与决策控制,而不依赖网络和数据中心。诚如赵京雷所说,嵌入式算法是整个计算机视觉算法中最难的一项,其对设备的功耗和计算资源均有高要求。所以阅面在其中应用了深度学习技术,以实现更好地实时动态性,从而满足多种场景化需求。
具体说来,阅面的嵌入式视觉重点关注设备端的计算能力,不需要依赖云端,可把算法嵌入到前端设备去运行,基于此即可实现低功耗和实时的本地化处理。但是,深度学习模型往往比较复杂。采用这一模型的嵌入式视觉算法,如果在低端设备上运行,将对计算的实时动态性产生很大的挑战。赵京雷告诉雷锋网 ,阅面在过去一年达到的重要成就即在该嵌入式视觉方案里加入了一个嵌入式引擎,能实现几十倍的加速能力,从而解决了深度学习和低端设备之间的矛盾。
当然,嵌入式视觉算法还有一项丰功伟绩——使得深度学习进入消费级市场并得以大规模应用成为可能。
AI 行业应以怎样的标准来衡量?
自 AI 行业火树银花以来,各种峰会、论坛,甚至是年末盘点类排名更是比比皆是。暂且抛弃权威与否的那些论调,这些排行在上下而起的同时确实吸引了很多不明观众的目光,但也让很大一部分业内人士对此不再感冒。赵京雷算是其中一个。