正文
当然,面部识别、水变成冰、Jekyll 博士变成 Hydes 并不是这些科学家的目的。他们想要使用人工智能来理解有商业潜在应用的边缘现象(fringey phenomena),比如为什么一些材料会变成超导体无限接近绝对零度,而一些材料相变后只是温和的低于零下 150 摄氏度。苏黎世论文的合作者 Sebastian Huber 说,「高温度的超导体可能对科技有帮助,而我们对它们的理解非常少。」
他们还想增进对奇异的相(物质),亦即拓扑态的理解,在这一状态下,量子粒子行为会比平常更为奇异。(发现拓扑量子相变的物理学家获得 2016 年诺奖)。像光子或原子这样的量子粒子变换物理状态要相对容易些,但是,拓扑态就比较坚实。这意味着他们或许能被用来搭建量子计算机,比如
微软的量子计算机的存储器
。
这项研究不仅仅是为了识别相(phases),而是为了理解变(transitions)。加拿大的研究小组训练计算机寻找在哪一温度下相变发生的准确率达到 0.3%。瑞士研究小组展示了一种更狡猾的招数,因为他们能让神经网络理解这些而无需提前训练它们。通常在机器学习中,你是给机器学习设定一个目标:找出狗的样子。「用 10 万张图片训练网络,」Huber 说,「图片里有狗,你可以随时告诉它。如果没有,你也能告诉网络。」
但是,物理学家压根儿没办法告诉网络什么是相变:他们只能给网络展示粒子集合。足够多的不同相足以让计算机学会识别每一种相。Huber 觉得,这种水平的新技能 get 最终能让神经网络发现全新的相。
这些新的研究成果并不仅仅停留在象牙塔。人们一直在寻找更强大、更便宜但更好的材料,为此,研究人员利用机器学习也有段时间了。2004 年,一项包括 NASA 和 GE 在内的科研合作借助神经网络模拟材料,研发出了一种持久耐用的合金,可用于航空器引擎制造。而且,机器学习要比在一台超级计算机上模拟某种材料的性质要快得多。
较之真实的大千世界,物理学家研究的相变模拟仍然比较简单。在这些实验性的材料最终变成新玩意儿前,物理学家仍需找出如何让神经网络一次解析 10^23 个粒子——而不仅仅是几百个。但是,Carrasquilla 已经希望给他的神经网络展示真实实验数据,看看它是否能找到相变。未来的计算机或许足够智能,不仅可以标记照片上奶奶的面部,还可以发现新的神奇材料。
作者:Juan Carrasquilla、Roger G. Melko
摘要:凝聚态物理学研究的是无限复杂的电子、原子核、磁矩、原子或量子比特集合的集体行为。这一复杂性体现在状态空间大小上,其大小会随着粒子数量的变化而呈指数级增长,这会让人想起机器学习中通常遇到的「维数灾难(curse of dimensionality』)」。尽管如此,机器学习社区已经开发出强大技术,用来识别、分类以及从复杂数据组中提取特征。在这篇研究中,我们表明,现代机器学习架构(比如全连接和卷积神经网络)可以识别各种凝聚态哈密尔顿量中的相以及相变。现代软件库使神经网络编程比较容易,研究人员可以训练神经网络识别多类有序参数,以及带有无常序的非平庸态(non-trivial states with conventional order),可以使用蒙特卡洛从原始态配置中取样。