正文
今年,CVPR 共收到2680有效投稿,其中2620篇经过完整评议(其余60篇有一些是出于技术或伦理方面的原因被委员会拒绝,有一些则在评议前退出)。
最终,一共有783篇论文被接收(接收率为29%)。其中有71篇获得长篇口头报告的展示机会,144篇获得短报告(spotlights)的机会。
CVPR 2017的接收论文有三种展示形式:两种形式的口头展示(长篇与短篇,即Oral 与 Spotlights),以及海报展示。新智元统计发现,大会一共有107个Session。
-
ORALS:与传统的CVPR orals 一样,CVPR 2017 上进入 orals 环节的论文数量比例与此前几届CVPR一致。每一个orals 报告的时间是12分钟。
-
SPOTLIGHTS: 每一个spotlight的报告者有4分钟的口头报告时间,来强调论文的主要贡献和创新之处,以及报告论文的主要研究成果。
-
POSTERS: 口头报告之外的论文将会得到海报展示的机会。此外,所有的口头报告之外的论文也会出现在接下来的海报展示环节中。
全部论文名单地址:http://www.cvpapers.com/cvpr2017.html
统计部分截图
经过新智元的统计,全部 783 篇论文中,华人学者参与并署名的论文约为356篇,占比45.47%。
(新智元同学人眼统计,可能会存在微小误差)
1. James J. DiCarlo 博士,MIT
演讲题目:自然智能(NI)科学:灵长类动物视觉感知的反向工程
摘要:神经科学和认知科学的一大难题是人类思维的反向工程。与其他科学领域相比,这个领域仍处于起步阶段。旨在模拟人工系统里的人类智能(AI)的正向工程方法也还是起步阶段。但是,在人类行为中显见的智能和认知的灵活性是存在的证据,证明机器可以被设计来模仿人类思维并与人类一起工作。在这个演讲中,我将提出,通过结合脑科学和认知科学家的研究(生成和数据采集),以及旨在模拟思维(实例化和数据预测)的正向工程,思维的反向工程可以解决。为了支持这个论点,我将重点关注感知智能(对象分类和检测),我将讲述脑科学,认知科学和计算机科学中如何融合以创造可以支持这些任务的深层神经网络。这些网络不仅在图像任务上达到人类的表现,而且它们的内部运作机制也大量模拟理论灵长类动物视觉系统的内部机制。但是,灵长类视觉系统(NI)表现仍然超出当前的深度神经网络(AI),我将展示一些神经科学方面的新线索。更广泛地说,这只是这一伟大人类科学追求的开始——理解自然智能,我希望激励更多人与我们一起参与这一领域。