正文
在解释 “炼金术” 时,Rahimi 说道:“吴恩达说过,机器学习就是新时代的电力。我却认为机器学习慢慢变成了新时代的炼金术。炼金术本身并不是坏事。它推动了冶金、纺织、化工、医疗等技术的发展,但是同时炼金术师也相信真的能把铜片变成黄金。 我希望我所生活的世界是基于非常稳固、有规律、有系统理论的知识体系上,而不是炼金术上。”
炼金术问题与AI的可重复性问题不同。可重复性问题是指,由于实验和发表的不一致,研究人员无法复制彼此的结果。
炼金术问题也与机器学习的“黑箱”问题或“可解释性”问题不同,后者是指难以解释特定的AI如何得出其结论。
正如Rahimi所言,炼金术问题和黑箱问题的区别在于,“一个机器学习系统是黑箱”和“整个领域变成了黑箱”。
Rahimi说,如果不深入了解构建和训练新算法所需的基本工具,研究人员就会像中世纪的炼金术士一样用道听途说的方法来研究人工智能。
谷歌的计算机科学家Francois Chollet补充说:“人们受草包族科学吸引,”依靠“民间传说和魔法咒语”。例如,他说,研究人员倾向于采用一些小技巧来调整他们的AI的“学习率”—— 算法在每次错误后自行纠错的比率——而不理解为什么某个算法比其他的更好。
另一些情况下,研究人员像在黑暗中乱撞一样训练他们的算法。例如,他们实现了所谓的“随机梯度下降”,以优化算法的参数,获得尽可能低的失败率。然而,尽管有数千篇关于随机梯度下降的学术论文,以及无数应用该方法的技巧,这个过程仍然依赖于试错。