正文
“李约瑟悖论”是指李约瑟在《科学与中国对世界的影响》一文中对三个“悖论”的分析。李约瑟在该文中阐述了中国古代大量的科学技术成就之后,对学术界长期存在的三种论点:中国无科学论、制度抑制发明论和中国文明停滞论,进行了有力的驳斥。该文结论部分提出的三个“悖沦”,本意就是对这三个似是而非的观点进行分析与反驳,结果使关于中国近代科学为什么落后的问题深化了,故从积极意义上称之为“李约瑟悖论”。这表明李约瑟本人对自己所提出的问题,既在不断求解又在不断修正和深化。
抽彩悖论又称凯伯格悖论,由H·凯伯格(H.Kyburgm)在他的《合理信念逻辑的概率》一书中所表述的悖论:我合理地相信在一百万张彩票中有一张将中彩。但我并不合理地相信1号票将中彩,也没有理由相信2号票将中彩。这一过程可以继续下去,以至最终也没有理由相信任何单独一张票将中彩。于是悖论出现了,因为我确实相信有一张票将中彩。这一悖论涉及到部分信念和完整信念之间的关系。
该悖论表明基于概率的信念表达方式与信念推理规刚之间的不一致性。抽彩悖论涉及到在命题与证据逻辑关系不确定的条件下信念表达和推理的问题。
索洛悖论,又称生产率悖论。20世纪80年代末,美国学者查斯曼(Strassman)调查了292个企业,结果发现了一个奇怪的现象,这些企业的IT投资和投资回报率(ROI)之间没有明显的关联。
1987年获得诺贝尔奖的经济学家罗伯特·索洛(Robert Solow)将这种现象称为“生产率悖论”(productivity paradox):“我们到处都看得见计算机,就是在生产率统计方面却看不见计算机(Computers everywhere except in the productivity statistics.)”。索洛悖论是指“IT产业无处不在,而它对生产率的推动作用却微乎其微”。
“节约悖论”是约翰·梅纳德·凯恩斯最早提出的一种理论,也称为“节俭悖论”、“节约反论”、“节约的矛盾”根据凯恩斯主义的国民收入决定理论,消费的变动会引起国民收入同方向变动,储蓄的变动会引起国民收入反方向变动。但根据储蓄变动引起国民收入反方向变动的理论,增加储蓄会减少国民收入,使经济衰退,是恶的;而减少储蓄会增加国民收入,使经济繁荣,是好的,这种矛盾被称为"节约悖论"。
节约的悖论是根据凯恩斯主义的国民收入决定理论推导出来的结论,它在资源没有得到充分利用的情况下是存在的,是短期的。长期中或当资源得到充分利用时在,节约的悖论是不存在的。
乌鸦悖论,也叫做亨佩尔的乌鸦或亨佩尔悖论,是二十世纪四十年代德国逻辑学家卡尔·古斯塔夫·亨佩尔(Carl Gustav Hempel)为了说明归纳法违反直觉而提出的一个悖论。
问题的综述
几千年以来,无数人观察了许多事务,比如地心引力法则,人们趋于相信其极可能是真理。这种类型的推理可以总结成“归纳法原理”:
如果实例X 被观察到和论断 T 相符合,那么论断 T 正确的概率增加。
亨佩尔给出了归纳法原理的一个例子:“所有乌鸦都是黑色的”论断。我们可以出去观察成千上万只乌鸦,然后发现他们都是黑的。在每一次观察之后,我们对“所有乌鸦都是黑的”的信任度会逐渐提高。归纳法原理在这里看起来合理的。
现在问题出现了。“所有乌鸦都是黑的” 的论断在逻辑上和“所有不是黑的东西不是乌鸦”等价。如果我们观察到一只红苹果,它不是黑的,也不是乌鸦,那么这次观察必会增加我们对“所有不是黑的东西不是乌鸦”的信任度,因此更加确信“所有的乌鸦都是黑的”!这个问题被总结成:
-
我从未见过紫牛,I never saw a purple cow
-
但若我见到一头,But if I were to see one
-
乌鸦皆黑的概率,Would the probability ravens are black
-
更加可能是一么?Have a better chance to be one?
(改写自吉利特·伯吉斯(Gelett Burgess)的诗)
选票分配的基本原则是公平合理,要做到公平合理。一个简单的办法是,选票按人数比例分配。但是会出现这样的问题:人数的比例常常不是整数。一个简单的办法是四舍五入,可四舍五入的结果可能会出现名额多余,或名额不足的情况。因为有这个缺点,美国乔治·华盛顿时代的财政部长亚历山大·汉密尔顿在1790年提出一个解决名额分配的办法,并于1792年为美国国会所通过。
芝诺悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。他的悖论在亚里士多德的《物理学》里被概括为以下四个:二分法、阿喀琉斯、飞矢不动、运动场。这些悖论中最著名的两个是:“阿基里斯跑不过乌龟”和“飞矢不动”。这些方法现在可以用微积分(无限)的概念解释。
(一)两分法悖论
悖论:物体在到达目的地之前必须先到达全程的一半,这个要求可以无限的进行下去,所以,如果它起动了,它永远到不了终点,或者,它根本起动不了。
例如:一位旅行者步行前往一个特定的地点。他必须先走完一半的距离,然后走剩下距离的一半,然后再走剩下距离的一半,永远有剩下部分的一半要走。因而这位旅行者永远走不到目的地!
(二)阿基里斯悖论
悖论:若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。
故事:在阿基里斯和乌龟之间展开一场比赛。乌龟在阿基里斯前头1000米开始爬,但阿基里斯跑得比乌龟快10倍,比赛开始,当阿基里斯跑了1000米时,乌龟仍然在他前头100米。而当阿基里斯又跑了100米到达乌龟前此到达的地方时,乌龟又向前爬了10米。芝诺争辩说,阿基里斯将会不断地逼近乌龟,但他永远无法赶上它。
(三)飞矢不动悖论
悖论:任何东西占据一个与自身相等的处所时是静止的,飞着的箭在任何一个瞬间总是占据与自身相等的处所,所以也是静止的。
解释:箭在运动过程中的任一瞬间时必在一个确定位置上,即是静止的,而时间是由无限多个瞬时组成的,因此箭就动不起来了。
(四)运动场悖论
悖论:两列物体B、C相对于一列静止物体A相向运动,B越过A的数目是越过C的一半,所以一半时间等于一倍时间。
简·莫森(Jan Mossin)是最早研究保险需求的主流经济学家,1968年他在《政治经济学杂志》(JPE)上发表的《理性保险购买之研究》一文中提出了以下两个非常有名的观点:
第一,当保费是在保单精算价值(纯保费)的基础上加上一个正比例的附加费用而形成时,对于规避风险的个体来说,最优的选择是购买部分保险(不足额保险);
第二,如果该个体具有递减的绝对风险规避系数,那么,保险就是一种“劣质品”。这一结论是建立在两个暗含的假设基础上的,即个体只面对一种风险,并且处于风险中的风险标的数量是固定的(与财富或者收入无关)。
然而,莫森的结论显然与现实不相符。对经济生活的实际观察表明,个人在投保时并不总是购买不足额保险,而且保险也不是一种劣质品。因为,如果说保险是一种劣质品的话,那么保险在贫穷国家应该更加繁荣,在发达国家则应当相对萧条,而现实并不是这样。由此不难看出,莫森这篇论文提出了两个悖论。那么后人是怎样解释这两个悖论的呢?
说法一:
几个世纪前,罗马教廷出了一本书,书中用当时最流行的数学推论,导出“上帝是万能的”。一位智者针锋相对地问:“上帝能创造出一块他搬不动的石头吗?”如果教廷回答说能的,那上帝不能搬动他创造的那块石头,所以上帝不是万能的。如果教廷回答说不能,那么上帝不能创造出一块他搬不动的石头,所以上帝也不是无所不能的。由此那位智者导出“上帝不是万能的”。
说法二:
文艺复兴时,人文主义者曾说过一句很经典的话,用来攻击天主教。就是;“让上帝造一块自己也搬不动的石头。”这话听初听起来暴牛,恨不能给他鼓掌放花。因为天主教宣称上帝全知全能,所以如果上帝能造出这块石头,则他连块石头都搬不动还称什么全知全能。而如果上帝造不出来这种石头,那他连块石头都造不出来还称什么全知全能。所以上帝必定不是全知全能的。